论文标题
与非线性汉密尔顿人的大量退化椭圆方程的存在问题
Existence issues for a large class of degenerate elliptic equations with nonlinear Hamiltonians
论文作者
论文摘要
我们为存在和唯一性提供了足够的条件,在有限的均匀凸域$ω$中,简化椭圆方程的解决方案也取决于非线性梯度项$ h $,以$ω$的$ω$,强迫项$ f $ and $ h $。结果适用于广泛的方程,作为主要部分重要示例,例如线性退化操作员,加权部分微量算子和均质的Monge-Ampère操作员。
We give sufficient conditions for the existence and uniqueness, in bounded uniformly convex domains $Ω$, of solutions of degenerate elliptic equations depending also on the nonlinear gradient term $H$, in term of the size of $Ω$, of the forcing term $f$ and of $H$. The results apply to a wide class of equations, having as principal part significant examples, e.g. linear degenerate operators, weighted partial trace operators and the homogeneous Monge-Ampère operator.