论文标题

凝结物质中的粒子孔对称性

Particle-Hole Symmetries in Condensed Matter

论文作者

Zirnbauer, Martin R.

论文摘要

“粒子孔对称性”一词在当代物理学中具有冲突的含义。本文旨在澄清和锐化术语,从凝结的角度进行构思和撰写。在这种情况下,我们建议将“粒子 - 孔结合”的操作定义为重言式代数自动形态,它只是简单地换成了单特性创建和an灭操作员,然后我们将其不变的升力构建到Fock空间。然后,由于粒子 - 孔连接与一个或另一个或另一种不符的串联逆转了首次量化的汉密尔顿的符号,因此在半填充时出现了颗粒 - 孔对称性,因为粒子孔连接的串联串联的串联串联。我们用一系列示例说明了建筑原理,包括Su-Schrieffer-Heeger模型和Kitaev-Majorana链。为了增强透视,我们将颗粒 - 孔孔对称性与相对论迪拉克费米斯的电荷结合对称性进行了对比。我们继续在相互作用的电子领域中介绍两个主要应用。首先,我们认为,抗铁磁量子旋转链的著名的haldane相可以绝热地连接到受颗粒 - 孔对称性保护的自由屈服拓扑相。另一方面,我们回顾了SON对半填充最低Landau水平的粒子孔共轭对称有效场理论的最新提案,并评论了复合效率的新兴微观图片。

The term "particle-hole symmetry" is beset with conflicting meanings in contemporary physics. Conceived and written from a condensed-matter standpoint, the present paper aims to clarify and sharpen the terminology. In that vein, we propose to define the operation of "particle-hole conjugation" as the tautological algebra automorphism that simply swaps single-fermion creation and annihilation operators, and we construct its invariant lift to the Fock space. Particle-hole symmetries then arise for gapful or gapless free-fermion systems at half filling, as the concatenation of particle-hole conjugation with one or another involution that reverses the sign of the first-quantized Hamiltonian. We illustrate that construction principle with a series of examples including the Su-Schrieffer-Heeger model and the Kitaev-Majorana chain. For an enhanced perspective, we contrast particle-hole symmetries with the charge-conjugation symmetry of relativistic Dirac fermions. We go on to present two major applications in the realm of interacting electrons. For one, we argue that the celebrated Haldane phase of antiferromagnetic quantum spin chains is adiabatically connected to a free-fermion topological phase protected by a particle-hole symmetry. For another, we review the recent proposal by Son for a particle-hole conjugation symmetric effective field theory of the half-filled lowest Landau level, and we comment on the emerging microscopic picture of the composite fermion.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源