论文标题

同构紧凑型波兰空间的同态类型的学位光谱

Degree spectra of homeomorphism types of compact Polish spaces

论文作者

Hoyrup, Mathieu, Kihara, Takayuki, Selivanov, Victor

论文摘要

波兰空间并不总是对可计算的波兰空间的同构。在本文中,我们研究了呈现紧凑型波兰空间的同构副本的非竞争性程度。我们表明,存在$ 0'$ - 可计算的低$ _3 $紧凑型波兰空间,这对一个可计算的空间不是同型的,并且对于任何自然数量$ n \ geq 2 $,都存在波兰空间$ x_n $,因此需要高$ _ {n} $ - degrees呈现$ x_n $ $ x_n $。我们还表明,关于图灵的降低性,没有紧凑的抛光空间最少。 本文的第一个版本出现在2020年4月。2023年9月进行了重大更新,并改进了证明和结果。这是从2024年1月开始的最终版本,对čech同源性小组的结果有更多结果。

A Polish space is not always homeomorphic to a computably presented Polish space. In this article, we examine degrees of non-computability of presenting homeomorphic copies of compact Polish spaces. We show that there exists a $0'$-computable low$_3$ compact Polish space which is not homeomorphic to a computable one, and that, for any natural number $n\geq 2$, there exists a Polish space $X_n$ such that exactly the high$_{n}$-degrees are required to present the homeomorphism type of $X_n$. We also show that no compact Polish space has a least presentation with respect to Turing reducibility. The first version of this article appeared in April 2020. A major update was made in September 2023, with improved proofs and results. This is the final version from January 2024, with more results on Čech homology groups.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源