论文标题
元图集成单层激子极化
Metasurface Integrated Monolayer Exciton Polariton
论文作者
论文摘要
单层过渡金属二分法(TMDS)是第一个真正的二维(2D)半导体,为研究2D极限的光结合相互作用提供了一个出色的平台。除了基本的科学探索外,该材料系统还吸引了对纳米光子设备社区的积极研究兴趣,以实现其独特的光电特性。单层TMD中固有的强激反应可以通过利用纳米光子结构中光的时间限制进一步增强。介电元面是一种这样的二维纳米光子结构,最近它表现出强大的潜力,不仅可以使现有的光学组件微型化,而且还可以创建全新的设计器光学元素。除了被动光学元素之外,研究人员现在正在使用新兴材料和元整日的实用性来探索活动的跨境,从而增强了轻质物质的相互作用。在这里,我们通过强烈耦合原子稀薄的二氧化碳(WSE2)单层与硝酸硅(SIN)跨表面来证明一个2D激子 - 果胶系统。通过WSE2-Metasurface系统的能量摩孔光谱,我们观察到反射和光致发光光谱中极化子分散的特征性抗跨。观察到了18 MeV的狂犬分裂,与我们的数值模拟良好。纳米图案跨表面的衍射效应也导致了高度方向的极化发射。最后,我们证明了Rabi分裂,偏光量分散和远场发射模式可以通过光学元原子的亚波长度尺度来量身定制。因此,我们的平台为通过先进的元光学工程的新型,异国情调的波利顿设备开发开发了大门。
Monolayer transition metal dichalcogenides (TMDs) are the first truly two-dimensional (2D) semiconductor, providing an excellent platform to investigate light-matter interaction in the 2D limit. Apart from fundamental scientific exploration, this material system has attracted active research interest in the nanophotonic devices community for its unique optoelectronic properties. The inherently strong excitonic response in monolayer TMDs can be further enhanced by exploiting the temporal confinement of light in nanophotonic structures. Dielectric metasurfaces are one such two-dimensional nanophotonic structures, which have recently demonstrated strong potential to not only miniaturize existing optical components, but also to create completely new class of designer optics. Going beyond passive optical elements, researchers are now exploring active metasurfaces using emerging materials and the utility of metasurfaces to enhance the light-matter interaction. Here, we demonstrate a 2D exciton-polariton system by strongly coupling atomically thin tungsten diselenide (WSe2) monolayer to a silicon nitride (SiN) metasurface. Via energy-momentum spectroscopy of the WSe2-metasurface system, we observed the characteristic anti-crossing of the polariton dispersion both in the reflection and photoluminescence spectrum. A Rabi splitting of 18 meV was observed which matched well with our numerical simulation. The diffraction effects of the nano-patterned metasurface also resulted in a highly directional polariton emission. Finally, we showed that the Rabi splitting, the polariton dispersion and the far-field emission pattern could be tailored with subwavelength-scale engineering of the optical meta-atoms. Our platform thus opens the door for the future development of novel, exotic exciton-polariton devices by advanced meta-optical engineering.