论文标题
双曲线空间中强大的大幅度学习
Robust Large-Margin Learning in Hyperbolic Space
论文作者
论文摘要
最近,与标准欧几里得空间相比,其尺寸明显少得多的层次数据的能力驱动了双曲线空间中的表示学习的兴趣。但是,双曲线空间对下游机器学习任务的可行性和优势较少。据我们所知,在本文中,我们介绍了在双曲线而不是欧几里得空间中学习分类器的第一个理论保证。具体而言,我们考虑了学习具有分层结构的数据的大规模分类器的问题。我们提供了一种算法,以有效地学习大规模的超平面,并依赖于仔细注入对抗性示例。最后,我们证明,对于嵌入双曲线空间中的分层数据,低嵌入尺寸可确保直接在双曲线空间中学习分类器时,可以确保出色的保证。
Recently, there has been a surge of interest in representation learning in hyperbolic spaces, driven by their ability to represent hierarchical data with significantly fewer dimensions than standard Euclidean spaces. However, the viability and benefits of hyperbolic spaces for downstream machine learning tasks have received less attention. In this paper, we present, to our knowledge, the first theoretical guarantees for learning a classifier in hyperbolic rather than Euclidean space. Specifically, we consider the problem of learning a large-margin classifier for data possessing a hierarchical structure. We provide an algorithm to efficiently learn a large-margin hyperplane, relying on the careful injection of adversarial examples. Finally, we prove that for hierarchical data that embeds well into hyperbolic space, the low embedding dimension ensures superior guarantees when learning the classifier directly in hyperbolic space.