论文标题
Lévy噪声的广义选择问题
Generalized selection problem with Lévy noise
论文作者
论文摘要
令$ a_ \ pm> 0 $,$β\ in(0,1)$,然后让$ z^{(α)} $是一个严格的$α$α$ - 稳定的lévy流程,具有跳跃度量$ν(\ mathrm {d} z)=(c _++++\+\ \ \ \ \ \ \ \ \ \ \ \ {i} _ {i}(c) C _- \ Mathbb {i} _ {( - \ infty,0)}(z))| z |^{ - 1-α} \,\ Mathrm {d} z $,$α\ in(1,2)$,$ C_ \ pm pm \ geq 0 $,$ c _+c _+c _++c c _++c c _--> 0 $ 0 $ 0 $ 0。模型随机微分方程的选择问题$ \ mathrm {d} \ bar x^\ varepsilon =(a _+\ \ \ \ \ \ \ \ \ \ \ \ \ \ {i} _ {[0,\ infty)}(\ bar x^\ varepsilon) - x^\ varepsilon)))| \ bar x^\ varepsilon |^β\,\ mathrm {d} t +\ varepsilon \ varepsilon \ mathrm {d} z^{(α)} $在较小的噪声限制$ \ varepsilon \ \ v varepsilon \ \ bar bar x^$ crince $ crince $ crense $ crinc.极限的非lipschitzian普通微分方程$ \ mathrm {d} \ bar x =(a _+\ \ \ \ \ \ \ \ \ \ \ \ \ {i} _ {[0,\ infty)}(\ bar x) - a _-- \ mathb {i} _ {i} _ {(\ bar) x |^β\,\ mathrm {d} t $带有概率$ \ bar p_ \ pm = \ bar p_ \ pm(α,c _+/c _-,β,a _+/a _--)$,请参阅[pilipenko and proske,stat。概率。 Lett。,132:62-73,2018]。 In this paper we solve the generalized selection problem for the stochastic differential equation $\mathrm{d} X^\varepsilon=a(X^\varepsilon)\,\mathrm{d} t+\varepsilon b(X^\varepsilon)\,\mathrm{d} Z$ whose dynamics in the vicinity of the origin in certain sense提醒模型方程的动力学。特别是我们表明,解决方案$ x^\ varepsilon $还收敛到极限不规则的不规则的普通微分方程$ \ mathrm {d} x = a(x)\,\ mathrm {d} t $,具有相同的模型选择概率$ \ bar p_ p_ p _ p _ \ pm $。这意味着,对于一大批不规则的随机微分方程,选择动力学完全由漂移的四个局部参数和跳跃度量确定。
Let $A_\pm>0$, $β\in(0,1)$, and let $Z^{(α)}$ be a strictly $α$-stable Lévy process with the jump measure $ν(\mathrm{d} z)=(C_+\mathbb{I}_{(0,\infty)}(z)+ C_-\mathbb{I}_{(-\infty,0)}(z))|z|^{-1-α}\,\mathrm{d} z$, $α\in (1,2)$, $C_\pm\geq 0$, $C_++C_->0$. The selection problem for the model stochastic differential equation $\mathrm{d} \bar X^\varepsilon=(A_+\mathbb{I}_{[0,\infty)}(\bar X^\varepsilon) - A_-\mathbb{I}_{(-\infty,0)}(\bar X^\varepsilon))|\bar X^\varepsilon|^β\,\mathrm{d} t +\varepsilon \mathrm{d} Z^{(α)}$ states that in the small noise limit $\varepsilon\to 0$, solutions $\bar X^\varepsilon$ converge weakly to the maximal or minimal solutions of the limiting non-Lipschitzian ordinary differential equation $\mathrm{d} \bar x=(A_+\mathbb{I}_{[0,\infty)}(\bar x)- A_-\mathbb{I}_{(\infty,0)}(\bar x))|\bar x|^β\,\mathrm{d} t$ with probabilities $\bar p_\pm=\bar p_\pm(α,C_+/C_-,β, A_+/A_-)$, see [Pilipenko and Proske, Stat. Probab. Lett., 132:62-73, 2018]. In this paper we solve the generalized selection problem for the stochastic differential equation $\mathrm{d} X^\varepsilon=a(X^\varepsilon)\,\mathrm{d} t+\varepsilon b(X^\varepsilon)\,\mathrm{d} Z$ whose dynamics in the vicinity of the origin in certain sense reminds of dynamics of the model equation. In particular we show that solutions $X^\varepsilon$ also converge to the maximal or minimal solutions of the limiting irregular ordinary differential equation $\mathrm{d} x=a(x) \,\mathrm{d} t$ with the same model selection probabilities $\bar p_\pm$. This means that for a large class of irregular stochastic differential equations, the selection dynamics is completely determined by four local parameters of the drift and the jump measure.