论文标题

参加并解码:4D fMRI任务状态使用注意模型解码

Attend and Decode: 4D fMRI Task State Decoding Using Attention Models

论文作者

Nguyen, Sam, Ng, Brenda, Kaplan, Alan D., Ray, Priyadip

论文摘要

功能磁共振成像(fMRI)是一种神经影像模态,可捕获受试者大脑中的血氧水平,而受试者在不同条件下静止或执行各种功能任务。鉴于fMRI数据,由于高维度(每个基准的数百万个采样点)和数据中固有的复杂时空血流流程模式,推断任务(称为任务状态解码)的问题(称为任务状态解码)是具有挑战性的。在这项工作中,我们建议通过将其作为4D时空分类问题来解决fMRI任务状态解码问题。我们提出了一种名为“大脑出席和解码)的新型结构,该结构使用残留的卷积神经网络,用于空间特征提取和自我注意的机制来进行时间建模。与以前在大型人类Connectome Young成人(HCP-YA)数据集的7任任务基准上的作品相比,我们获得了显着的性能增长。我们还通过冻结空间特征提取层并重新训练时间模型或对整个模型进行了填充,还可以研究带有看不见的HCP任务上提取的特征的可传递性。乐队的预训练功能在类似的任务上很有用,同时对其进行填充会在看不见的任务/条件上产生竞争成果。

Functional magnetic resonance imaging (fMRI) is a neuroimaging modality that captures the blood oxygen level in a subject's brain while the subject either rests or performs a variety of functional tasks under different conditions. Given fMRI data, the problem of inferring the task, known as task state decoding, is challenging due to the high dimensionality (hundreds of million sampling points per datum) and complex spatio-temporal blood flow patterns inherent in the data. In this work, we propose to tackle the fMRI task state decoding problem by casting it as a 4D spatio-temporal classification problem. We present a novel architecture called Brain Attend and Decode (BAnD), that uses residual convolutional neural networks for spatial feature extraction and self-attention mechanisms for temporal modeling. We achieve significant performance gain compared to previous works on a 7-task benchmark from the large-scale Human Connectome Project-Young Adult (HCP-YA) dataset. We also investigate the transferability of BAnD's extracted features on unseen HCP tasks, either by freezing the spatial feature extraction layers and retraining the temporal model, or finetuning the entire model. The pre-trained features from BAnD are useful on similar tasks while finetuning them yields competitive results on unseen tasks/conditions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源