论文标题
深度学习合成微观结构的生成中的材料逐设计框架,用于异质能量材料
Deep learning for synthetic microstructure generation in a materials-by-design framework for heterogeneous energetic materials
论文作者
论文摘要
异质能量(HE)材料(推进剂,炸药和烟火)的敏感性在非常依赖于它们的微观结构。化学反应的引发发生在孔隙和其他缺陷部位的能量定位引起的热点。新兴的HE反应的多尺度预测模型对中尺度上的物理学说明了粒子的统计代表性簇和微观结构中其他特征的规模。中尺度物理学以机器学习的闭合模型注入,这些模型通过解决的中尺度模拟告知。由于微观结构是随机的,因此需要使用中尺度模拟的集合来量化热点点火和生长,并为微结构依赖性能量沉积速率开发模型。我们建议利用生成的对抗网络(GAN)来产生合成异质材料微结构的合成集合。该方法通过从HE微结构的图像中学习来生成定性和定量逼真的微观结构。我们表明,所提出的GAN方法还允许生成新的形态,在该形态可以控制和空间操纵孔隙率分布。这样的控制铺平了设计新型微观结构的方式,以设计材料,以在逐个设计的材料框架中进行针对性的性能。
The sensitivity of heterogeneous energetic (HE) materials (propellants, explosives, and pyrotechnics) is critically dependent on their microstructure. Initiation of chemical reactions occurs at hot spots due to energy localization at sites of porosities and other defects. Emerging multi-scale predictive models of HE response to loads account for the physics at the meso-scale, i.e. at the scale of statistically representative clusters of particles and other features in the microstructure. Meso-scale physics is infused in machine-learned closure models informed by resolved meso-scale simulations. Since microstructures are stochastic, ensembles of meso-scale simulations are required to quantify hot spot ignition and growth and to develop models for microstructure-dependent energy deposition rates. We propose utilizing generative adversarial networks (GAN) to spawn ensembles of synthetic heterogeneous energetic material microstructures. The method generates qualitatively and quantitatively realistic microstructures by learning from images of HE microstructures. We show that the proposed GAN method also permits the generation of new morphologies, where the porosity distribution can be controlled and spatially manipulated. Such control paves the way for the design of novel microstructures to engineer HE materials for targeted performance in a materials-by-design framework.