论文标题
离散r-congrence的Ribaucour家族
The Ribaucour families of discrete R-congruences
论文作者
论文摘要
虽然通用的平滑肋骨球体一致性完全承认了两个信封,但离散的R-CONGRESS产生了一个离散封闭表面的2参数家族。本文的主要目的是获得对这种歧义的几何见解。特别是,讨论了由离散的通道表面和离散的legendre地图包围的离散的R-CONCRONES与一个球形曲率系列。
While a generic smooth Ribaucour sphere congruence admits exactly two envelopes, a discrete R-congruence gives rise to a 2-parameter family of discrete enveloping surfaces. The main purpose of this paper is to gain geometric insights into this ambiguity. In particular, discrete R-congruences that are enveloped by discrete channel surfaces and discrete Legendre maps with one family of spherical curvature lines are discussed.