论文标题
模块化形式和椭圆形的T设计
Modular forms and ellipsoidal T-designs
论文作者
论文摘要
在最近的工作中,Miezaki介绍了$球形$ $ $ $ $ t $ -d $ eSign $ in $ \ mathbb {r}^2 $,其中$ t $是潜在的无限集。例如,他提供了$ \ mathbb {z}^2 $ - lattice点,带有固定整数标准(又称shells)。这些外壳是$ maximal $ spherical $ t $ -Designs,其中$ t = \ mathbb {z}^+\ setMinus 4 \ mathbb {z}^+$。我们将球形$ t $ design的概念概括为特殊的椭圆机,并将Miezaki的作品扩展到常规形式的外壳,以构成具有1号类的想象二次次数的整数。
In recent work, Miezaki introduced the notion of a $spherical$ $T$-d$esign$ in $\mathbb{R}^2$, where $T$ is a potentially infinite set. As an example, he offered the $\mathbb{Z}^2$-lattice points with fixed integer norm (a.k.a. shells). These shells are $maximal$ spherical $T$-designs, where $T=\mathbb{Z}^+\setminus 4\mathbb{Z}^+$. We generalize the notion of a spherical $T$-design to special ellipses, and extend Miezaki's work to the norm form shells for rings of integers of imaginary quadratic fields with class number 1.