论文标题

元学习,用于短语扬声器识别和不平衡长度对

Meta-Learning for Short Utterance Speaker Recognition with Imbalance Length Pairs

论文作者

Kye, Seong Min, Jung, Youngmoon, Lee, Hae Beom, Hwang, Sung Ju, Kim, Hoirin

论文摘要

在实际的环境中,说话者识别系统需要识别出短语的说话者,而注册话语可能相对较长。但是,现有的说话者识别模型在如此简短的话语中表现不佳。为了解决这个问题,我们引入了一个元学习框架,以实现不平衡长度对。具体来说,我们使用典型的网络,并用一系列长长的话语和一组不同长度的简短话语进行训练。此外,由于仅针对给定情节中的课程优化可能不足以学习未见类的歧视性嵌入,因此我们还强制执行该模型来针对训练集中的整个类别的支持和查询集进行分类。通过将这两个学习方案结合在一起,我们的模型优于现有的最先进的说话者验证模型,该模型在Voxceleb数据集上的简短话语(1-2秒)上使用的标准监督学习框架学到了学习。我们还验证了我们所提出的模型,以实现看不见的说话者身份证明,这也可以在现有方法上取得显着的性能。这些代码可在https://github.com/seongmin-kye/meta-sr上找到。

In practical settings, a speaker recognition system needs to identify a speaker given a short utterance, while the enrollment utterance may be relatively long. However, existing speaker recognition models perform poorly with such short utterances. To solve this problem, we introduce a meta-learning framework for imbalance length pairs. Specifically, we use a Prototypical Networks and train it with a support set of long utterances and a query set of short utterances of varying lengths. Further, since optimizing only for the classes in the given episode may be insufficient for learning discriminative embeddings for unseen classes, we additionally enforce the model to classify both the support and the query set against the entire set of classes in the training set. By combining these two learning schemes, our model outperforms existing state-of-the-art speaker verification models learned with a standard supervised learning framework on short utterance (1-2 seconds) on the VoxCeleb datasets. We also validate our proposed model for unseen speaker identification, on which it also achieves significant performance gains over the existing approaches. The codes are available at https://github.com/seongmin-kye/meta-SR.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源