论文标题

近乎最佳的个性化治疗建议

Near-optimal Individualized Treatment Recommendations

论文作者

Meng, Haomiao, Zhao, Ying-Qi, Fu, Haoda, Qiao, Xingye

论文摘要

个性化治疗建议(ITR)是精确医学的重要分析框架。目的是根据患者的个体特征为患者分配适当的治疗方法。从机器学习的角度来看,ITR问题的解决方案可以作为加权分类问题提出,以最大程度地提高患者从建议治疗中获得的平均收益。在二进制和多酸性治疗设置中,已经提出了几种ITR方法。实际上,一个人可能更喜欢使用多种治疗选择的更灵活的建议。这促使我们开发方法,以获得一组近乎最佳的个性化治疗建议彼此替代,称为替代性个性化治疗建议(A-ITR)。我们提出了两种方法来估计结果加权学习(OWL)框架中最佳A-ITR。我们显示了这些方法的一致性,并获得了理论上最佳建议与估计的一种风险的上限。我们还进行了模拟研究,并将我们的方法应用于具有可注射抗糖尿病治疗的2型糖尿病患者的真实数据集。这些数值研究表明了提出的A-ITR框架的有用性。我们开发了一个r软件包AITR,可以在https://github.com/menghaomiao/aitr上找到。

Individualized treatment recommendation (ITR) is an important analytic framework for precision medicine. The goal is to assign proper treatments to patients based on their individual characteristics. From the machine learning perspective, the solution to an ITR problem can be formulated as a weighted classification problem to maximize the average benefit that patients receive from the recommended treatments. Several methods have been proposed for ITR in both binary and multicategory treatment setups. In practice, one may prefer a more flexible recommendation with multiple treatment options. This motivates us to develop methods to obtain a set of near-optimal individualized treatment recommendations alternative to each other, called alternative individualized treatment recommendations (A-ITR). We propose two methods to estimate the optimal A-ITR within the outcome weighted learning (OWL) framework. We show the consistency of these methods and obtain an upper bound for the risk between the theoretically optimal recommendation and the estimated one. We also conduct simulation studies, and apply our methods to a real data set for Type 2 diabetic patients with injectable antidiabetic treatments. These numerical studies have shown the usefulness of the proposed A-ITR framework. We develop a R package aitr which can be found at https://github.com/menghaomiao/aitr.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源