论文标题

Bogoslovsky-Finsler的地球运动时间

Geodesic motion in Bogoslovsky-Finsler Spacetimes

论文作者

Elbistan, M., Zhang, P. -M., Dimakis, N., Gibbons, G. W., Horvathy, P. A.

论文摘要

我们研究了在爱因斯坦一般相对论中平面重力波的鳍片变形的背景下移动的巨大粒子的自由运动。变形是Bogoslovsky引入的相对论鳍结构的一个参数家族的弯曲版本,在Cohen and Glashow的一定变形下,它是不变的,它是非常特殊的相对性小组ISIM(2)。我们使用baldwin-Jeffery-Rosen坐标得出的部分折断的Carroll对称性使我们能够集成地理学方程。定时尺寸的鳍尺地的横向坐标与Bogoslovsky-Finsler参数$ B $的任何值的基础平面重力波相同。然后,我们用爱因斯坦 - 马克斯韦尔方程的同质PP波溶液代替了基础平面重力波。我们通过将理论扩展到Finsler-Friedmann-Lemaitre模型来结束。

We study the free motion of a massive particle moving in the background of a Finslerian deformation of a plane gravitational wave in Einstein's General Relativity. The deformation is a curved version of a one-parameter family of Relativistic Finsler structures introduced by Bogoslovsky, which are invariant under a certain deformation of Cohen and Glashow's Very Special Relativity group ISIM(2). The partially broken Carroll Symmetry we derive using Baldwin-Jeffery-Rosen coordinates allows us to integrate the geodesics equations. The transverse coordinates of timelike Finsler-geodesics are identical to those of the underlying plane gravitational wave for any value of the Bogoslovsky-Finsler parameter $b$. We then replace the underlying plane gravitational wave by a homogenous pp-wave solution of the Einstein-Maxwell equations. We conclude by extending the theory to the Finsler-Friedmann-Lemaitre model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源