论文标题
关于罗宾边界条件的全球反de保姆时空时期的量子场理论
Quantum field theory on global anti-de Sitter space-time with Robin boundary conditions
论文作者
论文摘要
我们计算了全球,四维,反DE安慰剂时空的覆盖空间上的无质量,共耦合标量场的真空极化。由于反DE保姆空间不是全球双曲线,因此必须将边界条件应用于标量场。我们考虑了通用的罗宾(混合)边界条件,该条件是该场的经典演化明确且稳定的。除非应用Dirichlet或Neumann边界条件,否则该场平方的真空期望值不是恒定的。我们还计算了场平方的热期望值。对于Dirichlet边界条件,热和真空期望值都接近时空边界条件的众所周知的限制。对于所有其他罗宾边界条件(包括Neumann边界条件),真空和热期望值对时空边界具有相同的限制,但是在Dirichlet情况下,该极限并不等于该限制。
We compute the vacuum polarization for a massless, conformally coupled scalar field on the covering space of global, four-dimensional, anti-de Sitter space-time. Since anti-de Sitter space is not globally hyperbolic, boundary conditions must be applied to the scalar field. We consider general Robin (mixed) boundary conditions for which the classical evolution of the field is well-defined and stable. The vacuum expectation value of the square of the field is not constant unless either Dirichlet or Neumann boundary conditions are applied. We also compute the thermal expectation value of the square of the field. For Dirichlet boundary conditions, both thermal and vacuum expectation values approach the same well-known limit on the space-time boundary conditions. For all other Robin boundary conditions (including Neumann boundary conditions), the vacuum and thermal expectation values have the same limit on the space-time boundary, but this limit does not equal that in the Dirichlet case.