论文标题

紧凑型复合歧管上的霍明型GL(2)几何体

Holomorphic GL(2)-geometry on compact complex manifolds

论文作者

Biswas, Indranil, Dumitrescu, Sorin

论文摘要

我们研究了紧凑的复合歧管上的霍尔态GL(2)和SL(2)几何形状。我们表明,复合尺寸的紧凑型kähler歧管高于两个承认圆锥体GL(2)几何体的尺寸高于两个尺寸。我们将紧凑的Kähler-Einstein歧管和带有骨膜GL(2)地面的Fano歧管分类。在紧凑的Kähler-Einstein歧管中,我们证明唯一带有全体形态GL(2)几何的例子是被紧凑的复合物Tori(三维四维四维四维四维尺寸)所覆盖的示例,以及三维式谎言球覆盖的小球(Quadric的非紧凑型双)。

We study holomorphic GL(2) and SL(2) geometries on compact complex manifolds. We show that a compact Kähler manifold of complex even dimension higher than two admitting a holomorphic GL(2)-geometry is covered by a compact complex torus. We classify compact Kähler-Einstein manifolds and Fano manifolds bearing holomorphic GL(2)-geometries. Among the compact Kähler-Einstein manifolds we prove that the only examples bearing holomorphic GL(2)-geometry are those covered by compact complex tori, the three dimensional quadric and those covered by the three dimensional Lie ball (the non compact dual of the quadric).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源