论文标题

具有超浮雕理论的操作员代数

Operator algebras with hyperarithmetic theory

论文作者

Goldbring, Isaac, Hart, Bradd

论文摘要

我们表明,以下运算符代数具有超弧度理论:超限II $ _1 $ _1 $ \ rabscal r $,$ l(γ)$ for $γ$有限地生成的具有可解决的单词问题的群体,$ c^*($ c^*(γ)$ for $γ$ for $γ$,$ c^*$ c^*$ c^*up fin $ c^*up fil fil fil $ c(2^ω)$,和$ c(\ mathbb p)$(其中$ \ mathbb p $是pseudoarc)。我们还表明,Cuntz代数$ \ MATHCAL O_2 $具有超浮雕理论,只要Kirchberg嵌入问题具有肯定的答案。最后,我们证明,如果存在没有超氧化理论的生存关闭(E.C.)II $ _1 $ factor(resp。C$^*$ - 代数),那么E.C.的许多理论都有许多理论。 II $ _1 $因素(分别为E.C. C $^*$ - 代数)。

We show that the following operator algebras have hyperarithmetic theory: the hyperfinite II$_1$ factor $\mathcal R$, $L(Γ)$ for $Γ$ a finitely generated group with solvable word problem, $C^*(Γ)$ for $Γ$ a finitely presented group, $C^*_λ(Γ)$ for $Γ$ a finitely generated group with solvable word problem, $C(2^ω)$, and $C(\mathbb P)$ (where $\mathbb P$ is the pseudoarc). We also show that the Cuntz algebra $\mathcal O_2$ has a hyperarithmetic theory provided that the Kirchberg embedding problem has an affirmative answer. Finally, we prove that if there is an existentially closed (e.c.) II$_1$ factor (resp. C$^*$-algebra) that does not have hyperarithmetic theory, then there are continuum many theories of e.c. II$_1$ factors (resp. e.c. C$^*$-algebras).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源