论文标题
转子和$δ$ - 块的正数posets
Sublattices and $Δ$-blocks of orthomodular posets
论文作者
论文摘要
对于矫形器,我们引入了二进制关系delta和二元运算符D(x,y),它们分别是二进制关系C和换向器C(x,y)的概括,以原位晶格而闻名。我们表征了正骨和正交posets之间的矫形poset。此外,我们描述了关系增量与\ leftrightarrow与操作员D(x,y)之间的联系。从详细的角度来看,我们研究了有限集的子集的某些矫形器poset。特别是,我们描述了这种骨质posets的最大矫形器和布尔亚构象。最后,我们研究了Delta-Blocks的特性,相对于布尔sublattices和它们所包含的分配子镜头。
For orthoposets we introduce a binary relation Delta and a binary operator d(x,y) which are generalizations of the binary relation C and the commutator c(x,y), respectively, known for orthomodular lattices. We characterize orthomodular posets among orthoposets and orthogonal posets. Moreover, we describe connections between the relations Delta and \leftrightarrow and the operator d(x,y). In details we investigate certain orthomodular posets of subsets of a finite set. In particular we describe maximal orthomodular sublattices and Boolean subalgebras of such orthomodular posets. Finally, we study properties of Delta-blocks with respect to Boolean sublattices and distributive subposets they include.