论文标题

扰乱产生的组

Groups generated by derangements

论文作者

Bailey, R. A., Cameron, Peter J., Giudici, Michael, Royle, Gordon F.

论文摘要

我们检查了$ g $ dyangements产生的及时排列组$ g $的子组$ d(g)$。我们的主要结果绑定了该子组的索引:我们认为,如果$ g $具有$ n $,而不是frobenius组,则$ | g:d(g)| \ leqslant \ sqrt \ sqrt {n} -1 $;我们证明了这一点,除非$ g $是一个原始的仿射组。对于仿制组,我们将猜想转化为$ | h:r(h)| $的同等形式,其中$ h $是有限矢量空间上的线性群体,而$ r(h)$是由具有特征值〜$ 1 $的元素产生的$ h $的亚组。 如果$ g $是Frobenius组,则$ d(g)$是Frobenius内核,因此$ g/d(g)$是Frobenius补充的同构。我们举了一些示例,其中$ d(g)\ ne g $,并检查$ g/d(g)$的群体理论结构;特别是,我们构建了$ g/d(g)$的$ g $,不是Frobenius的补充。

We examine the subgroup $D(G)$ of a transitive permutation group $G$ which is generated by the derangements in $G$. Our main results bound the index of this subgroup: we conjecture that, if $G$ has degree $n$ and is not a Frobenius group, then $|G:D(G)|\leqslant\sqrt{n}-1$; we prove this except when $G$ is a primitive affine group. For affine groups, we translate our conjecture into an equivalent form regarding $|H:R(H)|$, where $H$ is a linear group on a finite vector space and $R(H)$ is the subgroup of $H$ generated by elements having eigenvalue~$1$. If $G$ is a Frobenius group, then $D(G)$ is the Frobenius kernel, and so $G/D(G)$ is isomorphic to a Frobenius complement. We give some examples where $D(G)\ne G$, and examine the group-theoretic structure of $G/D(G)$; in particular, we construct groups $G$ in which $G/D(G)$ is not a Frobenius complement.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源