论文标题
等级第二的融合产品分解分解
Graded decompositions of fusion products in rank two
论文作者
论文摘要
我们确定有限维不可约定表示的融合产物的分级分解,这些融合产物的简单代数为第二。此外,我们为这些表示形式提供了生成器和关系,并因此获得了Schur积极性猜想在这种情况下的存在。分解中分级的Littlewood-Richardson系数通过凸多属的晶格点参数化,并且在各种类型中给出了显式超平面描述。
We determine the graded decompositions of fusion products of finite-dimensional irreducible representations for simple Lie algebras of rank two. Moreover, we give generators and relations for these representations and obtain as a consequence that the Schur positivity conjecture holds in this case. The graded Littlewood-Richardson coefficients in the decomposition are parametrized by lattice points in convex polytopes and an explicit hyperplane description is given in the various types.