论文标题
通过孤对阳离子协调环境的超低晶格热导率材料的逆设计
Inverse Design of Ultralow Lattice Thermal Conductivity Materials Via Lone Pair Cation Coordination Environment
论文作者
论文摘要
孤对(LP)电子的存在与晶格热传输的破坏密切相关,这是实现有效热电学转化的策略的关键组成部分。通过利用晶格导热率$κ_l$与Pnictogen组LP阳离子协调环境的键角之间的经验关系,我们基于材料数据库筛选制定了一种逆设计策略,以识别用于热电流的超级元素材料,并使用超级流量$κ_L$。根据组成元素,名义电子计数,LP阳离子协调环境和合成性,筛选开放量子材料数据库的$ \ sim $ 635,000的真实和假设的无机晶体,我们确定了预期的189种化合物,这些化合物预期可展示超级$κ__L$。 As a validation, we explicitly compute the lattice dynamical properties of two of the compounds (Cu$_2$AgBiPbS$_4$ and MnTl$_2$As$_2$S$_5$) using first-principles calculations and successfully find both achieve ultralow $κ_L$ values at room temperature of $\sim$ 0.3--0.4 W/(m$\cdot$K)对应于无定形极限。我们的数据驱动方法为热电材料提供了有希望的候选者,并为材料的语音性质设计开辟了新的途径。
The presence of lone pair (LP) electrons is strongly associated with the disruption of lattice heat transport, which is a critical component of strategies to achieve efficient thermoelectric energy conversion. By exploiting an empirical relationship between lattice thermal conductivity $κ_L$ and the bond angles of pnictogen group LP cation coordination environments, we develop an inverse design strategy based on a materials database screening to identify chalcogenide materials with ultralow $κ_L$ for thermoelectrics. Screening the $\sim$ 635,000 real and hypothetical inorganic crystals of the Open Quantum Materials Database based on the constituent elements, nominal electron counting, LP cation coordination environment, and synthesizability, we identify 189 compounds expected to exhibit ultralow $κ_L$. As a validation, we explicitly compute the lattice dynamical properties of two of the compounds (Cu$_2$AgBiPbS$_4$ and MnTl$_2$As$_2$S$_5$) using first-principles calculations and successfully find both achieve ultralow $κ_L$ values at room temperature of $\sim$ 0.3--0.4 W/(m$\cdot$K) corresponding to the amorphous limit. Our data-driven approach provides promising candidates for thermoelectric materials and opens new avenues for the design of phononic properties of materials.