论文标题

在1+1个尺寸的总体尺寸有限数量的风味数量中,在1+1个尺寸中的不均匀阶段

Inhomogeneous phases in the Gross-Neveu model in 1+1 dimensions at finite number of flavors

论文作者

Lenz, Julian, Pannullo, Laurin, Wagner, Marc, Wellegehausen, Björn, Wipf, Andreas

论文摘要

我们使用晶格场理论探索有限数量的费米风味数量,有限的温度和有限的化学势。在限制$ n_f \ rightarrow \ infty $中,该模型已在连续体中进行了分析。在此极限中存在三个阶段:一个巨大的阶段,其中均匀的手性冷凝物会自发地打破手性对称性,这是一个无质量的对称相,具有消失的冷凝物,最有趣的是一个不均匀的相,带有冷凝物,在空间方向上振荡。在目前的工作中,我们使用手性晶格费米(Naive Fermions和Slac Fermions)用2、8和16口味模拟GN模型。通过两种离散化获得的结果是一致的。类似地,对于$ n_f \ rightarrow \ infty $,我们在相图中找到了三个不同的机制,其特征是冷凝水场的两点函数的质量不同。对于$ n_f = 8 $,我们详细绘制了相图,并获得较小的不均匀区域,例如限制$ n_f \ rightarrow \ infty $,在量子上抑制了量子波动。我们还评论了与1+1维中翻译不变性破坏不变性有关的金石玻色子的存在或不存在。

We explore the thermodynamics of the 1+1-dimensional Gross-Neveu (GN) model at finite number of fermion flavors $N_f$, finite temperature and finite chemical potential using lattice field theory. In the limit $N_f \rightarrow \infty$ the model has been solved analytically in the continuum. In this limit three phases exist: a massive phase, in which a homogeneous chiral condensate breaks chiral symmetry spontaneously, a massless symmetric phase with vanishing condensate and most interestingly an inhomogeneous phase with a condensate, which oscillates in the spatial direction. In the present work we use chiral lattice fermions (naive fermions and SLAC fermions) to simulate the GN model with 2, 8 and 16 flavors. The results obtained with both discretizations are in agreement. Similarly as for $N_f \rightarrow \infty$ we find three distinct regimes in the phase diagram, characterized by a qualitatively different behavior of the two-point function of the condensate field. For $N_f = 8$ we map out the phase diagram in detail and obtain an inhomogeneous region smaller as in the limit $N_f \rightarrow \infty$, where quantum fluctuations are suppressed. We also comment on the existence or absence of Goldstone bosons related to the breaking of translation invariance in 1+1 dimensions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源