论文标题

Tartanair:一个数据集,以推动视觉大满贯的限制

TartanAir: A Dataset to Push the Limits of Visual SLAM

论文作者

Wang, Wenshan, Zhu, Delong, Wang, Xiangwei, Hu, Yaoyu, Qiu, Yuheng, Wang, Chen, Hu, Yafei, Kapoor, Ashish, Scherer, Sebastian

论文摘要

我们提出了一个具有挑战性的数据集,即塔塔尔(Tartanair),用于机器人导航任务等。数据收集在光真逼真的仿真环境中,存在移动物体,变化的光和各种天气条件。通过在模拟中收集数据,我们能够获得多模式传感器数据和精确的地面真相标签,例如立体声RGB图像,深度图像,分割,光流,相机姿势和LIDAR点云。我们设置了具有各种样式和场景的大量环境,涵盖了具有挑战性的观点和各种运动模式,这些模式很难通过使用物理数据收集平台来实现。为了大规模启用数据收集,我们开发了自动管道,包括映射,轨迹采样,数据处理和数据验证。我们使用我们的数据评估了各种因素对视觉大满贯算法的影响。最先进的算法的结果表明,视觉大满贯问题远未解决。在诸如KITTI之类的既定数据集上显示出良好性能的方法在更困难的情况下表现不佳。尽管我们使用仿真,但我们的目标是通过为测试新方法提供具有挑战性的基准,同时为基于学习的方法提供大量的不同培训数据,从而推动现实世界中视觉猛击算法的极限。我们的数据集可在\ url {http://theairlab.org/tartanair-dataset}上找到。

We present a challenging dataset, the TartanAir, for robot navigation tasks and more. The data is collected in photo-realistic simulation environments with the presence of moving objects, changing light and various weather conditions. By collecting data in simulations, we are able to obtain multi-modal sensor data and precise ground truth labels such as the stereo RGB image, depth image, segmentation, optical flow, camera poses, and LiDAR point cloud. We set up large numbers of environments with various styles and scenes, covering challenging viewpoints and diverse motion patterns that are difficult to achieve by using physical data collection platforms. In order to enable data collection at such a large scale, we develop an automatic pipeline, including mapping, trajectory sampling, data processing, and data verification. We evaluate the impact of various factors on visual SLAM algorithms using our data. The results of state-of-the-art algorithms reveal that the visual SLAM problem is far from solved. Methods that show good performance on established datasets such as KITTI do not perform well in more difficult scenarios. Although we use the simulation, our goal is to push the limits of Visual SLAM algorithms in the real world by providing a challenging benchmark for testing new methods, while also using a large diverse training data for learning-based methods. Our dataset is available at \url{http://theairlab.org/tartanair-dataset}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源