论文标题

以$ 1 $ - 桥辫子,卫星结,歧管$ v2503 $以及非左订购手术和填充物

On $1$-bridge braids, satellite knots, the manifold $v2503$ and non-left-orderable surgeries and fillings

论文作者

Nie, Zipei

论文摘要

我们为非平凡结定义特性(d)。我们表明,由Dehn手术在带有坡度$ \ frac {p} {q} {q} \ ge 2g(k)-1 $的属性(d)的带有属性的结(d)上获得的流形的基本组。通过充分利用固定点方法,我们证明(1)闭合$ 1 $ bridge辫子的非平凡结具有属性(d); (2)L-Space卫星结,带有$ 1 $桥的编织图案,并具有财产(D)的伴侣,具有财产(D); (3)Dehn Filling在$ V2503 $上获得的歧管的基本组并非订购。此外,我们证明了表格$ t_ {p,kp \ pm 1}^{l,m} $的L空间扭曲的圆环结是正面$ 1 $ -Bridge编织的封闭。

We define the property (D) for nontrivial knots. We show that the fundamental group of the manifold obtained by Dehn surgery on a knot $K$ with property (D) with slope $\frac{p}{q}\ge 2g(K)-1$ is not left orderable. By making full use of the fixed point method, we prove that (1) nontrivial knots which are closures of positive $1$-bridge braids have property (D); (2) L-space satellite knots, with positive $1$-bridge braid patterns, and companion with property (D), have property (D); (3) the fundamental group of the manifold obtained by Dehn filling on $v2503$ is not left orderable. Additionally, we prove that L-space twisted torus knots of form $T_{p,kp\pm 1}^{l,m}$ are closures of positive $1$-bridge braids.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源