论文标题
双重重力与$ r $ flux来自分级泊松代数
Dual gravity with $R$ flux from graded Poisson algebra
论文作者
论文摘要
我们建议在``双重''重力中采取新的动作,以$ r $,$ q $通量背景。该结构基于学位-2美元$ 2级的符号几何形状,具有同源矢量场。我们认为的结构是非典型的,并且具有无曲率连接。众所周知,带有汉密尔顿的泊松结构$ 2 $的数据对应于$ tm \ oplus t^{*} m $上的courant代数。使用courant代数的支架和类似于向量场的谎言括号的其他支架,我们与非零曲率进行了连接,用于广义几何的束。该动作是(几乎)希尔伯特·因斯坦(Hilbert-Einstein)的作用。
We suggest a new action for a ``dual'' gravity in a stringy $R$, $Q$ flux background. The construction is based on degree-$2$ graded symplectic geometry with a homological vector field. The structure we consider is non-canonical and features a curvature-free connection. It is known that the data of Poisson structures of degree $2$ with a Hamiltonian correspond to a Courant algebroid on $TM \oplus T^{*}M$, the bundle of generalized geometry. With the bracket for the Courant algebroid and a further bracket which resembles the Lie bracket of vector fields, we get a connection with non-zero curvature for the bundle of generalized geometry. The action is the (almost) Hilbert-Einstein action for that connection.