论文标题

复发峰值神经网络模型的遗传算法参数优化

Genetic Algorithmic Parameter Optimisation of a Recurrent Spiking Neural Network Model

论文作者

Ezenwe, Ifeatu, Joshi, Alok, Wong-Lin, KongFatt

论文摘要

神经网络是复杂的算法,可以松散地模拟人脑的行为。它们在计算神经科学和人工智能中发挥了重要作用。下一代神经网络模型基于神经元的尖峰计时活动:尖峰神经网络(SNNS)。但是,SNN中的模型参数很难搜索和优化。先前使用遗传算法(GA)优化SNN的研究主要集中在简单,进料或振荡网络上,但在优化类似皮层的复发性SNNS方面没有做太多工作。在这项工作中,我们研究了使用气体在复发性SNN中寻找最佳参数以达到靶向神经元的射击率,例如如实验观察。我们考虑了一个基于皮质柱的SNN,其中包括1000个Izhikevich尖峰神经元,用于计算效率和生物学现实主义。探索的模型参数是神经元偏置输入电流。首先,我们发现了该特定的SNN,目标人群平均发射活动的最佳参数值,以及算法的收敛量为〜100代。然后,我们证明了GA最佳人口大小在约16-20范围内,而返回最佳健身值的交叉率为〜0.95。总体而言,我们已经成功证明了实现GA以优化基于复发皮质的SNN中的模型参数的可行性。

Neural networks are complex algorithms that loosely model the behaviour of the human brain. They play a significant role in computational neuroscience and artificial intelligence. The next generation of neural network models is based on the spike timing activity of neurons: spiking neural networks (SNNs). However, model parameters in SNNs are difficult to search and optimise. Previous studies using genetic algorithm (GA) optimisation of SNNs were focused mainly on simple, feedforward, or oscillatory networks, but not much work has been done on optimising cortex-like recurrent SNNs. In this work, we investigated the use of GAs to search for optimal parameters in recurrent SNNs to reach targeted neuronal population firing rates, e.g. as in experimental observations. We considered a cortical column based SNN comprising 1000 Izhikevich spiking neurons for computational efficiency and biologically realism. The model parameters explored were the neuronal biased input currents. First, we found for this particular SNN, the optimal parameter values for targeted population averaged firing activities, and the convergence of algorithm by ~100 generations. We then showed that the GA optimal population size was within ~16-20 while the crossover rate that returned the best fitness value was ~0.95. Overall, we have successfully demonstrated the feasibility of implementing GA to optimise model parameters in a recurrent cortical based SNN.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源