论文标题
低$ q^2 $核子矢量形式的参数化和应用
Parameterization and applications of the low-$Q^2$ nucleon vector form factors
论文作者
论文摘要
我们以方便的参数形式呈现质子和中子矢量形式的形式,该形式可针对动量转移$ \ lysesim $ $^$^2 $进行优化。形式因素是由全球拟合到电子散射数据和精确电荷半径测量结果确定的。采用了辐射校正的新处理。形式因素,不确定性和相关性的这种参数表示提供了一种有效的方法来评估许多派生的可观察物。我们考虑了两类说明性示例:GEV能量的中微子核子散射横截面,用于中微子振荡实验和原子光谱的核子结构校正。与常用的外形因子模型相比,中微子核子电流的电流准电流(CCQE)横截面的差异为3-5%,当时矢量形式因素受到A1协作的近期高统计量电子散射数据的约束。核子结构参数测定包括:质子和中子的磁性和Zemach半径,$ [r_m^p,r_m^n] = [0.739(41)(23),0.776(53)(28)(28)(28)] $ FM和$ [r_z^p,r_z^p,r_z^p,r_z^n] FM;核子的男修子半径,$ [(r^p_f)^3,(r^n_f)^3] = [2.246(58)(2),0.0093(6)(1)] $ fm $^3 $;电曲线,$ [\ langle r^4 \ rangle^p_e,\ langle r^4 \ rangle^n_e] = [1.08(28)(5),-0.33(24)(3)(3)] $ fm $^4 $;并在磁性曲率上的边界,$ [\ langle r^4 \ rangle^p_m,\ langle r^4 \ rangle^n_m] = [-2.0(1.7)(0.8)(0.8),-2.3(2.1)(2.1)(1.1)(1.1)(1.1)] $ fm $^4 $。从实验数据和辐射校正中传播了第一个和主导的不确定性,第二个误差是由于拟合程序引起的。
We present the proton and neutron vector form factors in a convenient parametric form that is optimized for momentum transfers $\lesssim$ few GeV$^2$. The form factors are determined from a global fit to electron scattering data and precise charge radius measurements. A new treatment of radiative corrections is applied. This parametric representation of the form factors, uncertainties and correlations provides an efficient means to evaluate many derived observables. We consider two classes of illustrative examples: neutrino-nucleon scattering cross sections at GeV energies for neutrino oscillation experiments and nucleon structure corrections for atomic spectroscopy. The neutrino-nucleon charged current quasielastic (CCQE) cross section differs by 3-5% compared to commonly used form factor models when the vector form factors are constrained by recent high-statistics electron-proton scattering data from the A1 Collaboration. Nucleon structure parameter determinations include: the magnetic and Zemach radii of the proton and neutron, $[r_M^p, r_M^n] = [ 0.739(41)(23), 0.776(53)(28)]$ fm and $[r_Z^p, r_Z^n] = [ 1.0227(94)(51), -0.0445(14)(3)]$ fm; the Friar radius of nucleons, $[(r^p_F)^3, (r^n_F)^3] = [2.246(58)(2), 0.0093(6)(1)]$ fm$^3$; the electric curvatures, $[\langle r^4 \rangle^p_E, \langle r^4 \rangle^n_E ] = [1.08(28)(5), -0.33(24)(3)]$ fm$^4$; and bounds on the magnetic curvatures, $[ \langle r^4 \rangle^p_M, \langle r^4 \rangle^n_M ] = [ -2.0(1.7)(0.8), -2.3(2.1)(1.1)]$ fm$^4$. The first and dominant uncertainty is propagated from the experimental data and radiative corrections, and the second error is due to the fitting procedure.