论文标题
Leibniz Superalgebras带有设定的评分
Leibniz superalgebras with a set grading
论文作者
论文摘要
考虑一个由任意套装$ i $(套件分级)等级的Leibniz Superalgebra $ \ Mathfrak l $。我们表明,$ \ mathfrak l $分解是描述良好的分级理想加上(也许)合适的线性子空间的总和。在最大长度的$ {\ mathfrak l} $的情况下,$ {\ mathfrak l} $的简单性也以连接为特征。
Consider a Leibniz superalgebra $\mathfrak L$ additionally graded by an arbitrary set $I$ (set grading). We show that $\mathfrak L$ decomposes as the sum of well-described graded ideals plus (maybe) a suitable linear subspace. In the case of ${\mathfrak L}$ being of maximal length, the simplicity of ${\mathfrak L}$ is also characterized in terms of connections.