论文标题
理性程度代数几何形状
Rational Degree Algebraic Geometry
论文作者
论文摘要
基本代数几何形状可以描述为对具有整数程度的多项式零的研究,可以自然地将其带到具有理性程度的“多项式”。 本文探讨了此类多项式的仿射品种,切线空间和投射空间,并指出了理性和整数之间的差异和相似性。也构造了$ \ mathcal {o}(o}(n),n \ in \ mathbb {q} $的行,并计算了他们的čech共同体。
Elementary Algebraic Geometry can be described as study of zeros of polynomials with integer degrees, this idea can be naturally carried over to `polynomials' with rational degree. This paper explores affine varieties, tangent space and projective space for such polynomials and notes the differences and similarities between rational and integer degrees. The line bundles $\mathcal{O}(n),n\in\mathbb{Q}$ are also constructed and their Čech cohomology computed.