论文标题
以$ 4D $ EINSTEIN-GAUSS BONNET重力产生黑洞
Generating black holes in $4D$ Einstein-Gauss-Bonnet gravity
论文作者
论文摘要
最近,在$ d $ d $ d $维EGB重力中,构建Einstein-Gauss-Bonnet(EGB)重力的兴趣激增。有趣的是,在各种建议的$ d \至4 $正规的EGB重力中,静态球形对称溶液重合,其他一些理论也承认了相同的解决方案。我们证明了一个定理,该定理表征了一个大型非静态或辐射的球形对称溶液对$ 4D $ EGB重力,通常代表球形对称的II型流体。该定理的扩展,没有证明与原始定理相似,会产生该理论的静态球形对称黑洞溶液。它不仅使我们能够将可用的已知黑洞解决方案识别为特定情况,而且还可以生成几种新的解决方案的4D $ EGB重力。
In recent times there is a surge of interest in constructing Einstein-Gauss-Bonnet (EGB) gravity, in the limit $D \to 4 $, of the $D$-dimensional EGB gravity. Interestingly, the static spherically symmetric solutions in the various proposed $D \to 4 $ regularized EGB gravities coincide, and incidentally some other theories also admit the same solution. We prove a theorem that characterizes a large family of nonstatic or radiating spherically symmetric solutions to the $4D$ EGB gravity, representing, in general, spherically symmetric Type II fluid. An extension of the theorem, given without proof as being similar to the original theorem, generates static spherically symmetric black hole solutions of the theory. It not only enables us to identify available known black hole solutions as particular cases but also to generate several new solutions of the $4D$ EGB gravity.