论文标题

折叠分叉纠缠的表面

Fold bifurcation entangled surfaces for one-dimensional Kitaev lattice model

论文作者

Momeni, Davood, Channuie, Phongpichit

论文摘要

我们使用ADS $ _2 $中的Dilatonic Gravity使用Kitaev模型研究了可行的全息图。我们提出了ADS $ _2 $中的重力双重理论,并建议这种批量动作是使用仪表/重力双重性在Kitaev模型中研究量子力学的合适玩具模型。这给出了双重重力大体中基塔夫模型的同等描述。标量和张量扰动详细研究。在近乎广告扰动的情况下,我们表明几何形状仍然像ADS一样“冻结”,而扩张扰动在ADS边界处的膨胀衰减。扰动的时间依赖性部分是振荡模型。我们发现双重重力诱导了有效且可恢复的量子作用。批量理论的纠缠熵是使用极端表面计算的。我们证明这些表面具有关键性的折叠分叉状态。我们的方法直接表明,可以通过折叠分叉最小表面来理解广告中的混乱$ _2 $。

We investigate feasible holography with the Kitaev model using dilatonic gravity in AdS$_2$. We propose a generic dual theory of gravity in the AdS$_2$ and suggest that this bulk action is a suitable toy model in studying quantum mechanics in the Kitaev model using gauge/gravity duality. This gives a possible equivalent description for the Kitaev model in the dual gravity bulk. Scalar and tensor perturbations are investigated in detail. In the case of near AdS perturbation, we show that the geometry still "freezes" as is AdS, while the dilation perturbation decays at the AdS boundary safely. The time-dependent part of the perturbation is an oscillatory model. We discover that the dual gravity induces an effective and renormalizable quantum action. The entanglement entropy for bulk theory is computed using extremal surfaces. We prove that these surfaces have a fold bifurcation regime of criticality. Our approach shows directly that chaos in AdS$_2$ can be understood via fold bifurcation minimal surfaces.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源