论文标题
通过电子能量损失谱 - 从固态到分子尺度的原子尺寸选择的AU簇的等离激元演化
Investigation of plasmonic evolution of atomically size-selected Au clusters by electron energy loss spectrum--from solid state to molecular scale
论文作者
论文摘要
在粒径大大降低时,出现了用于等离子体的多功能量子模式,以描述金属纳米颗粒中游离电子的集体振荡。对量子等离子体的理解不是传统的纳米级研究,而是对纳米颗粒的极端原子能控制的理解,呼吁在一系列具有原子能调节原子数量的纳米颗粒上的尺寸依赖性等离子体测量。在这里,我们报告了使用电子能量损耗(EEL)光谱在扫描透射电子显微镜中使用电子能量损耗(EEL)光谱的原子尺寸选定的金颗粒的N依赖性等离子体演化。鳗鱼映射分配为2.7 eV的特征,为散装等离子体,另一个为2.4 eV为表面等离子体,进化揭示了三个方案。当n从70000降低到887时,散装等离子体保持不变,而表面等离子体则表现出从2.4到2.3 eV的略有红移。可以通过经典等离子体物理学和电子边界散射引起的智障的主导地位来理解它。当N进一步从887降低到300时,大块等离子体完全消失,表面等离子体显示出稳定的Blueshift,这表明量子限制出现并修改了映射的过渡。当n 100 300时,等离子体分为三个优质特征,这归因于量化的单电子跃迁在量化的分子类似能量水平之间按时间依赖性密度功能理论计算计算。表面等离子体的激发率具有缩放定律,其指数依赖于n(n^0.669),本质上是半径的平方。因此,证明了从经典到量子的统一进化图。
Versatile quantum modes emerge for plasmon describing the collective oscillations of free electrons in metallic nanoparticles when the particle sizes are greatly reduced. Rather than traditional nanoscale study, the understanding of quantum plasmon desires extremal atomic control of the nanoparticles, calling for size dependent plasmon measurement over a series of nanoparticles with atomically adjustable atom number over several orders of magnitude. Here we report the N dependent plasmonic evolution of atomically size selected gold particles with N= 100 70000 using electron energy loss (EEL) spectroscopy in a scanning transmission electron microscope. The EEL mapping assigns a feature at 2.7 eV as the bulk plasmon and another at 2.4 eV as surface plasmon, which evolution reveals three regimes. When N decreases from 70000 to 887, the bulk plasmon stays unchanged while the surface plasmon exhibits a slight red shift from 2.4 to 2.3 eV. It can be understood by the dominance of classical plasmon physics and electron boundary scattering induced retardation. When N further decreases from 887 to 300, the bulk plasmon disappears totally and the surface plasmon shows a steady blueshift, which indicates that the quantum confinement emerges and modifies the intraband transition. When N 100 300, the plasmon is split to three fine features, which is attributed to superimposed single electron transitions between the quantized molecular like energy level by the time dependent density functional theory calculations. The surface plasmon's excitation ratio has a scaling law with an exponential dependence on N ( N^0.669), essentially the square of the radius. A unified evolution picture from the classical to quantum, molecular plasmon is thus demonstrated.