论文标题
规定最小距离的二面代码
Dihedral codes with prescribed minimum distance
论文作者
论文摘要
二面代码(准循环代码的特定情况)具有一个不错的代数结构,可以有效地存储它们。在本文中,我们与BCH代码理论相比,我们对其进行了调查,并证明了其维度和最小距离的一些下限。这使我们能够构建具有规定最小距离的二面代码。在二进制案例中,我们提出了该结构获得的最佳二面代码的一些示例。
Dihedral codes, particular cases of quasi-cyclic codes, have a nice algebraic structure which allows to store them efficiently. In this paper, we investigate it and prove some lower bounds on their dimension and minimum distance, in analogy with the theory of BCH codes. This allows us to construct dihedral codes with prescribed minimum distance. In the binary case, we present some examples of optimal dihedral codes obtained by this construction.