论文标题
四面体在复杂的双曲空间中,带有挑选内核的希尔伯特空间
Tetrahedra in complex hyperbolic space and Hilbert spaces with Pick kernels
论文作者
论文摘要
我们研究了具有完整的挑选内核的复杂双曲空间中集合的几何形状与希尔伯特空间之间的关系。我们专注于将集合组合到较大的集合和将希尔伯特空间组装到较大空间中的几何形状上。模型问题包括描述双打空间中四面体的可能的三角形面,并描述带有挑选内核的四维希尔伯特空间的三维子空间。我们的新型技术工具是对顶点角度的余弦的复杂类似物。
We study of the relation between the geometry of sets in complex hyperbolic space and Hilbert spaces with complete Pick kernels. We focus on the geometry associated with assembling sets into larger sets and of assembling Hilbert spaces into larger spaces. Model questions include describing the possible triangular faces of a tetrahedron in hyperbolic space and describing the three dimensional subspaces of four dimensional Hilbert spaces with Pick kernels. Our novel technical tool is a complex analog of the cosine of a vertex angle.