论文标题
处理的年龄:年龄驱动状态采样和处理启用边缘计算的实时IoT应用程序的卸载
Age of Processing: Age-driven Status Sampling and Processing Offloading for Edge Computing-enabled Real-time IoT Applications
论文作者
论文摘要
地位信息的新鲜感对于时间关键的物联网(IoT)应用程序至关重要。公制测量状态新鲜度是信息年龄(AOI),它捕获了从源节点(例如传感器)到最新状态更新的时间所经过的时间。在本文中,我们提出了一个新颖的度量,加工年龄(AOP),以量化这种状态新鲜度,该状态捕获了由于生成的最新收到的已处理状态数据所经过的时间。与AOI相比,AOP进一步考虑了数据处理时间。由于物联网设备的计算和能源资源有限,因此该设备可以选择在受约束的状态采样频率下将数据处理卸载到附近的边缘服务器上。我们旨在通过共同优化状态采样频率并处理卸载策略,以在长期过程中最小化长期过程中的平均AOP。我们将这个在线问题提出为无限 - 摩尼斯的限制了马尔可夫决策过程(CMDP),并具有平均奖励标准。然后,我们通过利用Lagrangian方法将CMDP问题转换为无约束的Markov决策过程(MDP),并为原始CMDP问题提出了Lagrangian转换框架。此外,我们将框架与基于扰动的改进集成在一起,以实现CMDP问题的最佳政策。广泛的数值评估表明,所提出的算法的表现优于基准,平均AOP降低了30%。
The freshness of status information is of great importance for time-critical Internet of Things (IoT) applications. A metric measuring status freshness is the age-of-information (AoI), which captures the time elapsed from the status being generated at the source node (e.g., a sensor) to the latest status update.However, in intelligent IoT applications such as video surveillance, the status information is revealed after some computation intensive and time-consuming data processing operations, which would affect the status freshness. In this paper, we propose a novel metric, age-of-processing (AoP), to quantify such status freshness, which captures the time elapsed of the newest received processed status data since it is generated. Compared with AoI, AoP further takes the data processing time into account. Since an IoT device has limited computation and energy resource, the device can choose to offload the data processing to the nearby edge server under constrained status sampling frequency.We aim to minimize the average AoP in a long-term process by jointly optimizing the status sampling frequency and processing offloading policy. We formulate this online problem as an infinite-horizon constrained Markov decision process (CMDP) with average reward criterion. We then transform the CMDP problem into an unconstrained Markov decision process (MDP) by leveraging a Lagrangian method, and propose a Lagrangian transformation framework for the original CMDP problem. Furthermore, we integrate the framework with perturbation based refinement for achieving the optimal policy of the CMDP problem. Extensive numerical evaluations show that the proposed algorithm outperforms the benchmarks, with an average AoP reduction up to 30%.