论文标题
在最小侵入性手术中,立体声范围的可变形软组织的动态重建
Dynamic Reconstruction of Deformable Soft-tissue with Stereo Scope in Minimal Invasive Surgery
论文作者
论文摘要
在最小的侵入性手术中,重要的是重建和可视化最新的软组织表面形状,以减轻组织损伤。本文提出了一种创新的同时定位和映射(SLAM)算法,用于使用立体镜的一系列图像对表面的可变形密集重建。我们基于嵌入式变形(ED)节点引入了一个翘曲场,并从连续的立体声图像对中恢复了3D形状。通过将最后一个更新的模型变形为当前的实时模型来估算翘曲场。我们的SLAM系统可以:(1)通过逐步融合新的观测值,以生动的准确纹理融合,从而逐步构建实时模型。 (2)估计没有观察到的区域的变形形状,其原理是可行的。 (3)显示模型的连续形状。 (4)估计软组织和范围之间的当前相对姿势。具有公开可用数据集的体内实验表明,3D模型可以逐步构建,该模型与腹腔镜获得的立体声图像序列的不同变形不同。结果表明,我们的SLAM系统的潜在临床应用在最小的侵入性手术中为外科医生提供有用的形状和质地信息。
In minimal invasive surgery, it is important to rebuild and visualize the latest deformed shape of soft-tissue surfaces to mitigate tissue damages. This paper proposes an innovative Simultaneous Localization and Mapping (SLAM) algorithm for deformable dense reconstruction of surfaces using a sequence of images from a stereoscope. We introduce a warping field based on the Embedded Deformation (ED) nodes with 3D shapes recovered from consecutive pairs of stereo images. The warping field is estimated by deforming the last updated model to the current live model. Our SLAM system can: (1) Incrementally build a live model by progressively fusing new observations with vivid accurate texture. (2) Estimate the deformed shape of unobserved region with the principle As-Rigid-As-Possible. (3) Show the consecutive shape of models. (4) Estimate the current relative pose between the soft-tissue and the scope. In-vivo experiments with publicly available datasets demonstrate that the 3D models can be incrementally built for different soft-tissues with different deformations from sequences of stereo images obtained by laparoscopes. Results show the potential clinical application of our SLAM system for providing surgeon useful shape and texture information in minimal invasive surgery.