论文标题
通过汉克尔决定因素进行有理近似
Rational Approximations via Hankel Determinants
论文作者
论文摘要
定义单元素$ e_n(x):= x^n $,让$ l $为线性功能。在本文中,我们描述了一种在指定条件下的方法,该方法在从值$ l(e_1)$,$ l(e_2)$的hankel决定因素方面产生$ l(e_0)$的近似值。 。 。 。许多数学兴趣的常数可以表示为积分的值。示例包括Euler-Mascheroni常数$γ$,Euler-Gompertz常数$δ$和Riemann-Zeta常数$ k \ ge 2 $。在许多情况下,我们可以使用积分表示代表常数来构建线性函数,$ l(e_0)$等于给定常数和$ l(e_1)$,$ l(e_2)$,。 。 。是理性数字。在这种情况下,在指定条件下,我们获得了常数的合理近似值。特别是,我们为前面提到的常数$γ$,$δ$和$ζ(k)$执行此过程。我们注意到,我们的近似值不足以研究这些常数的算术特性。
Define the monomials $e_n(x) := x^n$ and let $L$ be a linear functional. In this paper we describe a method which, under specified conditions, produces approximations for the value $L(e_0 )$ in terms of Hankel determinants constructed from the values $L(e_1 )$, $L(e_2 )$, . . . . Many constants of mathematical interest can be expressed as the values of integrals. Examples include the Euler-Mascheroni constant $γ$, the Euler-Gompertz constant $δ$, and the Riemann-zeta constants $ζ(k)$ for $k \ge 2$. In many cases we can use the integral representation for the constant to construct a linear functional for which $L(e_0)$ equals the given constant and $L(e_1)$, $L(e_2)$, . . . are rational numbers. In this case, under the specified conditions, we obtain rational approximations for our constant. In particular, we execute this procedure for the previously mentioned constants $γ$, $δ$, and $ζ(k)$. We note that our approximations are not strong enough to study the arithmetic properties of these constants.