论文标题
量子通道估计的渐近理论
Asymptotic theory of quantum channel estimation
论文作者
论文摘要
量子Fisher信息(QFI)作为量子状态的函数,测量量子状态携带的有关未知参数的信息量。量子通道的(纠缠辅助)QFI定义为输出状态的最大QFI,假设在单个探针和一个Ancilla上具有纠缠的输入状态。在量子计量学中,人们有兴趣计算$ n $相同的量子频道的QFI时,当$ n \ rightarrow \ infty $(称为渐近QFI)时。多年来,研究人员发现了渐近QFI的各种类型的上限,但仅在几种特定情况下才能被证明可以实现。众所周知,任意量子通道的渐近QFI用$ n $线性或四元增长。在这里,我们表明一个简单的标准可以确定缩放是线性还是二次。在这两种情况下,渐近QFI和量子误差校正方案都可以通过半决赛程序进行计算。当缩放尺度是二次时,恢复了无噪声量子通道的Heisenberg极限。当缩放率是线性的时,我们表明渐近QFI一般而言大于单渠道QFI的$ n $倍,此外,顺序估计策略没有比平行的估计策略。
The quantum Fisher information (QFI), as a function of quantum states, measures the amount of information that a quantum state carries about an unknown parameter. The (entanglement-assisted) QFI of a quantum channel is defined to be the maximum QFI of the output state assuming an entangled input state over a single probe and an ancilla. In quantum metrology, people are interested in calculating the QFI of $N$ identical copies of a quantum channel when $N \rightarrow \infty$, which is called the asymptotic QFI. Over the years, researchers found various types of upper bounds of the asymptotic QFI, but they were proven achievable only in several specific situations. It was known that the asymptotic QFI of an arbitrary quantum channel grows either linearly or quadratically with $N$. Here we show that a simple criterion can determine whether the scaling is linear or quadratic. In both cases, the asymptotic QFI and a quantum error correction protocol to achieve it are computable via a semidefinite program. When the scaling is quadratic, the Heisenberg limit, a feature of noiseless quantum channels, is recovered. When the scaling is linear, we show the asymptotic QFI is still in general larger than $N$ times the single-channel QFI and furthermore, sequential estimation strategies provide no advantage over parallel ones.