论文标题
三元纯指数二元方程的注释
A note on the ternary purely exponential Diophantine equation $A^x+B^y=C^z$ with $A+B=C^2$
论文作者
论文摘要
令$ \ ell,m,r $固定为正整数,以便$ 2 \ nmid \ ell $,$ 3 \ nmid \ ell m $,$ \ ell> r $和$ 3 \ mid r $。在本文中,使用BHV定理有关Lehmer数字的原始分隔线的存在,我们证明,如果$ \ min \ {r \ ell m^2-1,(\ ell-r),(\ ell-r)\ ell m^2+1+1 \}> 30 $ m)^z $只有正整数解决方案$(x,y,z)=(1,1,2)$。
Let $\ell, m, r$ be fixed positive integers such that $2\nmid \ell$, $3\nmid \ell m$, $\ell>r$ and $3\mid r$. In this paper, using the BHV theorem on the existence of primitive divisors of Lehmer numbers, we prove that if $\min\{r\ell m^2-1,(\ell-r)\ell m^2+1\}>30$, then the equation $(r\ell m^2-1)^x+((\ell -r)\ell m^2+1)^y=(\ell m)^z$ has only the positive integer solution $(x,y,z)=(1,1,2)$.