论文标题
具有$ \ MATHCAL {RT} $ SYMENTRY的非赫米特式ISING模型的归化基态的有效的非热物理学
Effective non-Hermitian physics for degenerate ground states of a nonHermitian Ising model with $\mathcal{RT}$ symmetry
论文作者
论文摘要
在本文中,基于具有$ \ MATHCAL {RT} $的一维非旋转模型 - 不变术语,我们研究了两个(几乎)简化基础状态的非慢性物理学。通过使用高阶扰动方法,获得了有效的伪旋转模型,以描述两个(几乎)退化基态的非热物理学,这与数值计算完全一致。我们发现可能存在有效的(抗)$ \ MATHCAL {pt} $对称性,用于两个(几乎)退化基态的有效伪旋转模型。特别是,存在自发(抗)$ \ MATHCAL {pt} $ - 对称性的拓扑归化基态,外部磁场中具有可调参数。我们还发现,即使是非常小的想象外部字段也会驱动$ \ Mathcal {pt} $相位过渡。
In this paper, based on a one-dimensional non-Hermitian spin model with $\mathcal{RT}$-invariant term, we study the non-Hermitian physics for the two (nearly) degenerate ground states. By using the high-order perturbation method, an effective pseudo-spin model is obtained to describe non-Hermitian physics for the two (nearly) degenerate ground states, which are precisely consistent with the numerical calculations. We found that there may exist effective (anti) $\mathcal{PT}$ symmetry for the effective pseudo-spin model of the two (nearly) degenerate ground states. In particular, there exists spontaneous (anti) $\mathcal{PT}$ -symmetry breaking for the topological degenerate ground states with tunable parameters in external fields. We also found that even a very tiny imaginary external field applied will drive $\mathcal{PT}$ phase transition.