论文标题

使用循环的持续同源性对集体和单个上皮细胞的拓扑数据分析

Topological Data Analysis of Collective and Individual Epithelial Cells using Persistent Homology of Loops

论文作者

Bhaskar, Dhananjay, Zhang, William Y., Wong, Ian Y.

论文摘要

相互作用的自属性颗粒(例如上皮细胞)可以动态地自组织为复杂的多细胞模式,在没有先验信息的情况下,它们具有挑战性。从经典上讲,已经根据本地排序描述了不同的阶段和相变,这可能不会在较大的长度尺度下捕获结构特征。取而代之的是,拓扑数据分析(TDA)确定在不同长度尺度(即持续的同源性)下空间连接性的稳定性,并且可以根据将一种配置重组为另一种配置的“成本”比较不同的粒子配置。在这里,我们演示了一种基于拓扑的机器学习方法,用于基于大规模循环的个人和集体阶段的无监督分析。我们表明,这些拓扑回路(即维度1同源性)对于粒子数和密度的变化是可靠的,尤其是与连接的组件(即维度0同源性)相比。我们使用TDA来绘制具有恒定种群大小以及允许增殖时的粘附和推进的模拟颗粒的相图。接下来,我们使用这种方法来介绍我们最近在不同生长因子条件下上皮细胞聚类的实验,这与我们的模拟相比。最后,我们以不同的长度尺度,稀疏的采样和随着时间的流逝来表征这种方法的鲁棒性。总体而言,我们设想TDA将广泛地应用于模型不合稳定的方法,可以分析从细胞骨架电动机到运动细胞到蜂拥而至或蜂拥而至的动物的活性系统。

Interacting, self-propelled particles such as epithelial cells can dynamically self-organize into complex multicellular patterns, which are challenging to classify without a priori information. Classically, different phases and phase transitions have been described based on local ordering, which may not capture structural features at larger length scales. Instead, topological data analysis (TDA) determines the stability of spatial connectivity at varying length scales (i.e. persistent homology) and can compare different particle configurations based on the "cost" of reorganizing one configuration into another. Here, we demonstrate a topology-based machine learning approach for unsupervised profiling of individual and collective phases based on large-scale loops. We show that these topological loops (i.e. dimension 1 homology) are robust to variations in particle number and density, particularly in comparison to connected components (i.e. dimension 0 homology). We use TDA to map out phase diagrams for simulated particles with varying adhesion and propulsion, at constant population size as well as when proliferation is permitted. Next, we use this approach to profile our recent experiments on the clustering of epithelial cells in varying growth factor conditions, which are compared to our simulations. Finally, we characterize the robustness of this approach at varying length scales, with sparse sampling, and over time. Overall, we envision TDA will be broadly applicable as a model-agnostic approach to analyze active systems with varying population size, from cytoskeletal motors to motile cells to flocking or swarming animals.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源