论文标题

了解超快激光诱导的有机分子动力学的实时时间依赖性密度功能理论模拟

Understanding real-time time-dependent density-functional theory simulations of ultrafast laser-induced dynamics in organic molecules

论文作者

Krumland, Jannis, Valencia, Ana M., Pittalis, Stefano, Rozzi, Carlo A., Cocchi, Caterina

论文摘要

实时时间依赖性密度功能理论以及Ehrenfest分子动力学方案,正在成为研究纳米级超快现象的一种流行方法。多亏了最近的发展,也有可能在模拟中明确包含一个与时间相关的激光脉冲,从而访问瞬态激发方案。但是,这些计算中需要的复杂性要求对可访问且近似(“穿着”或“裸露”)数量的近似分析进行深入分析,以评估他们为我们提供模拟过程的现实情况的能力。在这项工作中,我们分析了三个小分子(乙烯,苯和噻吩)的超快动力学,并通过在绝热局部密度近似的框架中激发了共振激光脉冲。将电子响应以诱导的偶极矩和激发态种群的方式与可溶解的两级模型给出的结果进行了比较。这样,我们可以用简单的估计器(例如激发电子的数量)来解释电荷载体动力学。从计算出的瞬态吸收光谱中,我们揭示了非线性效应的外观,例如激发态吸收和振动耦合。通过这种方式,我们观察到激光激发通过增强其中的非谐度来影响振动光谱,而相干振动运动有助于稳定已经在几十秒内的电子激发稳定的电子激发。

Real-time time-dependent density functional theory, in conjunction with the Ehrenfest molecular dynamics scheme, is becoming a popular methodology to investigate ultrafast phenomena on the nanoscale. Thanks to recent developments, it is also possible to explicitly include in the simulations a time-dependent laser pulse, thereby accessing the transient excitation regime. However, the complexity entailed in these calculations calls for in-depth analysis of the accessible and yet approximate (either "dressed" or "bare") quantities, in order to evaluate their ability to provide us with a realistic picture of the simulated processes. In this work, we analyze the ultrafast dynamics of three small molecules (ethylene, benzene, and thiophene) excited by a resonant laser pulse in the framework of the adiabatic local-density approximation. The electronic response to the laser perturbation in terms of induced dipole moment and excited-state population is compared to the results given by an exactly solvable two-level model. In this way, we can interpret the charge-carrier dynamics in terms of simple estimators, such as the number of excited electrons. From the computed transient absorption spectra we unravel the appearance of nonlinear effects such as excited-state absorption and vibronic coupling. In this way, we observe that the laser excitation affects the vibrational spectrum by enhancing the anharmonicities therein while the coherent vibrational motion contributes to stabilize the electronic excitation already within a few tens of femtoseconds.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源