论文标题

通过共同信息最大化学习的无监督分层图表示学习

Unsupervised Hierarchical Graph Representation Learning by Mutual Information Maximization

论文作者

Ding, Fei, Zhang, Xiaohong, Sybrandt, Justin, Safro, Ilya

论文摘要

基于图形神经网络(GNN)的图形表示学习可以大大改善下游任务的性能,例如节点和图形分类。但是,通用GNN模型不会以层次的方式汇总节点信息,并且可能会错过许多图的关键高阶结构特征。层次聚合还使图表示可以解释。此外,监督的图表学习需要标记的数据,这是昂贵且容易出错的数据。为了解决这些问题,我们提出了一种无监督的图表学习方法,无监督的层次图表示(UHGR),可以生成图形的层次表示。我们的方法着重于在“本地”和高级“全局”表示之间最大化相互信息,这使我们能够学习节点嵌入和图形嵌入,而无需任何标记的数据。为了证明所提出的方法的有效性,我们使用学习的节点和图形嵌入进行节点和图分类。结果表明,所提出的方法与几个基准的最先进的监督方法可相当。此外,我们对分层表示形式的可视化表明我们的方法可以捕获有意义且可解释的群集。

Graph representation learning based on graph neural networks (GNNs) can greatly improve the performance of downstream tasks, such as node and graph classification. However, the general GNN models do not aggregate node information in a hierarchical manner, and can miss key higher-order structural features of many graphs. The hierarchical aggregation also enables the graph representations to be explainable. In addition, supervised graph representation learning requires labeled data, which is expensive and error-prone. To address these issues, we present an unsupervised graph representation learning method, Unsupervised Hierarchical Graph Representation (UHGR), which can generate hierarchical representations of graphs. Our method focuses on maximizing mutual information between "local" and high-level "global" representations, which enables us to learn the node embeddings and graph embeddings without any labeled data. To demonstrate the effectiveness of the proposed method, we perform the node and graph classification using the learned node and graph embeddings. The results show that the proposed method achieves comparable results to state-of-the-art supervised methods on several benchmarks. In addition, our visualization of hierarchical representations indicates that our method can capture meaningful and interpretable clusters.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源