论文标题
深帽:单眼人类绩效使用弱监督捕获
DeepCap: Monocular Human Performance Capture Using Weak Supervision
论文作者
论文摘要
人力绩效捕获是一个非常重要的计算机视觉问题,其中许多应用在电影制作和虚拟/增强现实中。许多先前的性能捕获方法要么需要昂贵的多视图设置,要么没有恢复使用框架到框架对应的密集时空连贯的几何形状。我们提出了一种新颖的深度学习方法,以捕捉单眼密集的人性表现。基于多视图监督,我们的方法以弱监督的方式进行了培训,完全消除了使用3D地面真相注释训练数据的需求。网络体系结构基于两个单独的网络,将任务分解为姿势估计和非刚性表面变形步骤。广泛的定性和定量评估表明,我们的方法在质量和稳健性方面优于最新技术。
Human performance capture is a highly important computer vision problem with many applications in movie production and virtual/augmented reality. Many previous performance capture approaches either required expensive multi-view setups or did not recover dense space-time coherent geometry with frame-to-frame correspondences. We propose a novel deep learning approach for monocular dense human performance capture. Our method is trained in a weakly supervised manner based on multi-view supervision completely removing the need for training data with 3D ground truth annotations. The network architecture is based on two separate networks that disentangle the task into a pose estimation and a non-rigid surface deformation step. Extensive qualitative and quantitative evaluations show that our approach outperforms the state of the art in terms of quality and robustness.