论文标题

Eventsr:从异步事件到图像重建,修复和超级分辨率通过端到端的对抗性学习

EventSR: From Asynchronous Events to Image Reconstruction, Restoration, and Super-Resolution via End-to-End Adversarial Learning

论文作者

Wang, Lin, Kim, Tae-Kyun, Yoon, Kuk-Jin

论文摘要

事件摄像机感知强度的变化,并且比常规摄像机具有许多优势。为了利用事件摄像机,已经提出了一些方法来重建事件流的强度图像。但是,输出仍处于低分辨率(LR),嘈杂和不现实的情况下。事件摄像机的低质量输出更广泛的应用,其中需要高空间分辨率(HR)以及高时间分辨率,动态范围和无运动模糊。当没有地面真相(GT)HR图像和下采样内核可用时,我们考虑了LR事件重建和超出强度图像的问题。为了应对挑战,我们提出了一条新颖的端到端管道,该管道从事件流中重建LR图像,增强图像质量并为增强的图像(称为Eventsr)示例。对于缺乏真实的GT图像,我们的方法主要是无监督的,可以部署对抗性学习。为了培训Eventsr,我们创建了一个开放数据集,包括现实世界和模拟场景。两个数据集的使用都可以提高网络性能,并且每个阶段的网络体系结构和各种损失功能都有助于提高图像质量。整个管道分为三个阶段。虽然每个阶段主要用于三个任务之一,但早期阶段中的网络以端到端方式通过各自的损失函数进行了微调。实验结果表明,事件R从事件中重建了模拟和现实世界数据的事件中的高质量SR图像。

Event cameras sense intensity changes and have many advantages over conventional cameras. To take advantage of event cameras, some methods have been proposed to reconstruct intensity images from event streams. However, the outputs are still in low resolution (LR), noisy, and unrealistic. The low-quality outputs stem broader applications of event cameras, where high spatial resolution (HR) is needed as well as high temporal resolution, dynamic range, and no motion blur. We consider the problem of reconstructing and super-resolving intensity images from LR events, when no ground truth (GT) HR images and down-sampling kernels are available. To tackle the challenges, we propose a novel end-to-end pipeline that reconstructs LR images from event streams, enhances the image qualities and upsamples the enhanced images, called EventSR. For the absence of real GT images, our method is primarily unsupervised, deploying adversarial learning. To train EventSR, we create an open dataset including both real-world and simulated scenes. The use of both datasets boosts up the network performance, and the network architectures and various loss functions in each phase help improve the image qualities. The whole pipeline is trained in three phases. While each phase is mainly for one of the three tasks, the networks in earlier phases are fine-tuned by respective loss functions in an end-to-end manner. Experimental results show that EventSR reconstructs high-quality SR images from events for both simulated and real-world data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源