论文标题

适应性行为的贝叶斯大脑模型:威斯康星卡分类任务的应用

A Bayesian brain model of adaptive behavior: An application to the Wisconsin Card Sorting Task

论文作者

D'Alessandro, Marco, Radev, Stefan T., Voss, Andreas, Lombardi, Luigi

论文摘要

自适应行为通过认知剂与不断变化的环境需求之间的动态相互作用而出现。对自适应行为基础的信息处理的调查依赖于受控的实验设置,在该设置中,要求个人完成苛刻的任务,以便必须动态地学习隐藏状态或抽象规则。尽管这些任务中的表现经常被视为测量高级认知过程的代理,但标准方法包括通过简单的启发式评分措施来汇总响应模式。通过这项工作,我们提出并验证了一个新的计算贝叶斯模型,以核算已建立的威斯康星州卡分类测试中的个人绩效。我们将新模型嵌入了贝叶斯大脑理论的数学框架中,根据贝叶斯推论的逻辑,对隐藏环境状态的信念被动态更新。我们的计算模型将不同的认知过程映射到可分离的,神经生物学上可见的,信息理论构建基础的响应模式。我们通过广泛的模拟研究评估了有意义的人类绩效的模型识别和表现力。我们进一步将模型应用于真实的行为数据,以突出提出的模型在单个级别恢复认知动态方面的实用性。最终讨论了我们对临床和认知神经科学研究的计算建模方法的实践和理论意义,以及潜在的未来改进。

Adaptive behavior emerges through a dynamic interaction between cognitive agents and changing environmental demands. The investigation of information processing underlying adaptive behavior relies on controlled experimental settings in which individuals are asked to accomplish demanding tasks whereby a hidden state or an abstract rule has to be learned dynamically. Although performance in such tasks is regularly considered as a proxy for measuring high-level cognitive processes, the standard approach consists in summarizing response patterns by simple heuristic scoring measures. With this work, we propose and validate a new computational Bayesian model accounting for individual performance in the established Wisconsin Card Sorting Test. We embed the new model within the mathematical framework of Bayesian Brain Theory, according to which beliefs about the hidden environmental states are dynamically updated following the logic of Bayesian inference. Our computational model maps distinct cognitive processes into separable, neurobiologically plausible, information-theoretic constructs underlying observed response patterns. We assess model identification and expressiveness in accounting for meaningful human performance through extensive simulation studies. We further apply the model to real behavioral data in order to highlight the utility of the proposed model in recovering cognitive dynamics at an individual level. Practical and theoretical implications of our computational modeling approach for clinical and cognitive neuroscience research are finally discussed, as well as potential future improvements.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源