论文标题

支持对概率偏好的硬性查询

Supporting Hard Queries over Probabilistic Preferences

论文作者

Ping, Haoyue, Stoyanovich, Julia, Kimelfeld, Benny

论文摘要

偏好分析被广泛应用于社会选择和电子商务等各个领域。最近提出的框架以偏好关系增强了关系数据库,该数据库表示以统计排名模型的形式表示不确定的偏好,并提供了评估连接性查询(CQ)的方法,这些查询(CQ)在项目属性之间表达偏好。在本文中,我们探讨了对更一般和更难计算的查询的评估。 本文的主要重点是一类CQ,这些CQ无法通过以前的工作进行评估。事实证明,这些查询非常困难,因为相关的变量表示要比较的项目。为了克服这种硬度,我们将这些变量与它们的域值实例化,将硬CQ重写为此类实例化查询的工会,并开发出几个精确且近似的求解器来评估这些查询工会。我们证明,针对特定常用查询的确切求解器比一般求解器要高得多。此外,我们证明,利用重要性采样的复杂近似求解器可能比精确的求解器更有效,同时表现出良好的精度。除了支持可证明的硬CQ之外,我们还提出了评估重要查询家族和Top-K查询家族的方法。

Preference analysis is widely applied in various domains such as social choice and e-commerce. A recently proposed framework augments the relational database with a preference relation that represents uncertain preferences in the form of statistical ranking models, and provides methods to evaluate Conjunctive Queries (CQs) that express preferences among item attributes. In this paper, we explore the evaluation of queries that are more general and harder to compute. The main focus of this paper is on a class of CQs that cannot be evaluated by previous work. These queries are provably hard since relate variables that represent items being compared. To overcome this hardness, we instantiate these variables with their domain values, rewrite hard CQs as unions of such instantiated queries, and develop several exact and approximate solvers to evaluate these unions of queries. We demonstrate that exact solvers that target specific common kinds of queries are far more efficient than general solvers. Further, we demonstrate that sophisticated approximate solvers making use of importance sampling can be orders of magnitude more efficient than exact solvers, while showing good accuracy. In addition to supporting provably hard CQs, we also present methods to evaluate an important family of count queries, and of top-k queries.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源