论文标题
Black Hole-Neutron Star合并发出的Kilonova发射。 I.观察角依赖性光曲面
Kilonova Emission From Black Hole-Neutron Star Mergers. I. Viewing-Angle-Dependent Lightcurves
论文作者
论文摘要
在本文中,我们提出了一种数值方法,用于研究预测的灯曲线作为视角的函数。我们推断出在用66个模拟验证的广泛质量比范围内的潮汐动力喷射的质量和速度的拟合配方中,并将其用于Kilonova LightCurves的计算中。 BH-NS合并Kilonova的计算峰值光度通常大约几次$ 10^{41} \ {\ rm Erg \ s^{ - 1}} $,它始终是$ \ lyseSim4.5 \ times10^{41} {41} {41} {41} \ rm erg {\ rm erg erg erg {\ rm erg \ rm erg \ s}这对应于光学和$ \ sim -rm mag} $的AB绝对幅度,在光学上和$ \ sim -16 \ {\ rm mag} $中。由于动态喷射的预计光球区域比磁盘风流大得多,因此动态喷射通常会导致大多数来自BH-NS合并的Kilonova发射。拟合的黑体温度和观察到的多带灯曲面的形状对视线不敏感。受光传播效应影响的观察到的多波段灯曲面的峰值与动力喷射和观察者之间的相对运动方向有关。观察到的光度随着观看角确定的投影光球区域而变化。但是,预测的峰光度仅因$ \ sim(2-3)$(或$ \ sim1 \ {\ rm mag} $)而变化。当考虑到短期伽玛射线爆发余辉时,要考虑轴上的几何形状,余辉的发射通常会超过基洛诺瓦的发射,并且只能在红色带中观察到,尤其是在$ k $ band中。与GW170817/AT2017GFO相比,BH-NS合并Kilonovae在光学上是昏暗的,但可能是红外的。在合并后的同一时期,BH-NS合并Kilonovae的黑体拟合温度低于GW170817/AT2017GFO。
In this paper, we present a numerical method to study the predicted lightcurves as a function of viewing angle. We extrapolate the fitting formulae for the mass and velocity of tidal dynamical ejecta across a wide range of mass ratio validated with 66 simulations and use them in the calculations of the kilonova lightcurves. The calculated peak luminosity of a BH-NS merger kilonova is typically about a few times $10^{41}\ {\rm erg\ s^{-1}}$, which is always $\lesssim4.5\times10^{41}\ {\rm erg\ s^{-1}}$. This corresponds to the AB absolute magnitudes fainter than $\sim -15\ {\rm mag}$ in optical and $\sim -16\ {\rm mag}$ in infrared. Since the projected photosphere area of the dynamical ejecta is much larger than that of the disk wind outflows, the dynamical ejecta usually contribute to the majority of the kilonova emission from BH-NS mergers. The fitted blackbody temperature and the shape of the observed multi-band lightcurves are insensitive to the line of sight. The peak time of the observed multi-band lightcurves, affected by the light propagation effect, is related to the relative motion direction between the dynamical ejecta and the observer. The observed luminosity varies with the projected photosphere area determined by the viewing angles. However, the predicted peak luminosity only varies by a factor of $\sim (2 - 3)$ (or by $\sim1\ {\rm mag}$) for different viewing angles. When the short-duration gamma-ray burst afterglow is taken into account, for an on-axis geometry, the kilonova emission is usually outshone by the afterglow emission and can be only observed in the redder bands, especially in the $K$-band at late times. Compared with GW170817/AT2017gfo, the BH-NS merger kilonovae are optically dim but possibly infrared bright. At the same epoch after the merger, the blackbody fitting temperature of the BH-NS merger kilonovae is lower than that of GW170817/AT2017gfo.