论文标题
非本地零件感知点云
Non-Local Part-Aware Point Cloud Denoising
论文作者
论文摘要
本文通过探索3D对象和场景中固有的非本地自相似性,提出了一种新型的非本地零件感知的深神经网络,以探索固有的非本地自相似性,从而呈云。与探索本地小补丁的现有作品不同,我们设计了使用图形注意模块自定义的非本地学习单元(NLU),以在整个点云上适应性地捕获非本地语义相关的功能。为了提高降解性能,我们级联一系列的NLU,以逐步提炼噪音输入中的噪声特征。此外,除了传统的表面重建损失外,我们还制定了语义零件损失,以使相关部分的预测正规化,并以部分意识的方式进行DeNo。最后,我们进行了广泛的实验,以定量和定性地评估我们的方法,并在合成和实扫描的嘈杂输入上证明了它优于最先进的方法。
This paper presents a novel non-local part-aware deep neural network to denoise point clouds by exploring the inherent non-local self-similarity in 3D objects and scenes. Different from existing works that explore small local patches, we design the non-local learning unit (NLU) customized with a graph attention module to adaptively capture non-local semantically-related features over the entire point cloud. To enhance the denoising performance, we cascade a series of NLUs to progressively distill the noise features from the noisy inputs. Further, besides the conventional surface reconstruction loss, we formulate a semantic part loss to regularize the predictions towards the relevant parts and enable denoising in a part-aware manner. Lastly, we performed extensive experiments to evaluate our method, both quantitatively and qualitatively, and demonstrate its superiority over the state-of-the-arts on both synthetic and real-scanned noisy inputs.