论文标题
完整的哈密顿量用于旋转二进制系统的第一个后订单
Complete Hamiltonian for spinning binary systems at first post-Minkowskian order
论文作者
论文摘要
基于最新的进展,将壳振幅技术应用于一般相对论的经典可观察物,我们提出了一个封闭式的公式,用于在第1次后 - 科沃斯基(1pm)订购的旋转二进制系统的保守性哈密顿量。它适用于具有任意旋转多重矩的一般旋转物体。根据定义,该公式在重力常数中是线性的,但在动量和自旋膨胀中的所有顺序确切。在每个自旋顺序上,我们的公式意味着自旋依赖性和动量依赖性几乎完全分解。我们在动量中扩展了公式,并将术语与文献中牛顿后的计算的1pm部分进行比较。为了达到规范转换,我们的结果与所有以前的结果完全吻合。我们还通过有效的一体映射将黑洞的公式与来自Kerr Black Hole附近的旋转测试体衍生的公式进行了比较,并找到完美的一致性。
Building upon recent progress in applying on-shell amplitude techniques to classical observables in general relativity, we propose a closed-form formula for the conservative Hamiltonian of a spinning binary system at the 1st post-Minkowskian (1PM) order. It is applicable for general spinning bodies with arbitrary spin multipole moments. The formula is linear in gravitational constant by definition, but exact to all orders in momentum and spin expansions. At each spin order, our formula implies that the spin-dependence and momentum dependence factorize almost completely. We expand our formula in momentum and compare the terms with 1PM parts of the post-Newtonian computations in the literature. Up to canonical transformations, our results agree perfectly with all previous ones. We also compare our formula for black hole to that derived from a spinning test-body near a Kerr black hole via the effective one-body mapping, and find perfect agreement.