论文标题
信念传播重新加载:学习标签问题的BP层
Belief Propagation Reloaded: Learning BP-Layers for Labeling Problems
论文作者
论文摘要
许多研究人员已经提出,将深层神经网络与图形模型相结合可以创建更有效,更正则化的复合模型。实践实施此操作的主要困难与合适的学习目标的差异以及推断的必要性有关。在这项工作中,我们采用了最简单的推理方法之一,即截短的最大产物信念传播,并添加使其成为深度学习模型的适当组成部分所需的内容:我们将其与学习配方的损失和计算后退操作相关联。该BP层可以用作卷积神经网络(CNN)中的最终或中间区块,从而使我们能够在不同规模级别上设计构成BP推断和CNN的分层模型。该模型适用于一系列密集的预测问题,非常有实现,并在立体声,光流和语义分割中提供参数有效且健壮的解决方案。
It has been proposed by many researchers that combining deep neural networks with graphical models can create more efficient and better regularized composite models. The main difficulties in implementing this in practice are associated with a discrepancy in suitable learning objectives as well as with the necessity of approximations for the inference. In this work we take one of the simplest inference methods, a truncated max-product Belief Propagation, and add what is necessary to make it a proper component of a deep learning model: We connect it to learning formulations with losses on marginals and compute the backprop operation. This BP-Layer can be used as the final or an intermediate block in convolutional neural networks (CNNs), allowing us to design a hierarchical model composing BP inference and CNNs at different scale levels. The model is applicable to a range of dense prediction problems, is well-trainable and provides parameter-efficient and robust solutions in stereo, optical flow and semantic segmentation.